MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decentralized Pose Control of Modular Reconfigurable Robots Operating in Liquid Environments

Author(s)
Marques, Joao V. Amorim; Ozdemir, Anil; Doyle, Matthew J.; Rus, Daniela; Gros, Roderich
Thumbnail
DownloadAccepted version (818.5Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Modular reconfigurable robots are touted for their flexibility, as their bodies can assume a wide range of shapes. A particular challenge is to make them move efficiently in 3D without compromising the scalability of the system. This paper proposes decentralized and fully reactive controllers for pose control of 3D modular reconfigurable robots. The robots operate in liquid environments, and move by routing fluid through themselves. Each module uses only two bits of sensory information per face. Additionally, the modules can use up to five bits of information that are exchanged via shared power lines. We prove that robots of convex shape are guaranteed to reach a goal object with a preferred orientation. Using computer simulations of Modular Hydraulic Propulsion robots, all controllers are assessed for different environments, system sizes and noise, and their performances compared against a centralized controller. Given the simplicity of the solutions, modules could be realized at scales below a millimeter-cube, where robots of high spatial resolution could perform accurate movements in 3D liquid environments.
Date issued
2019-11
URI
https://hdl.handle.net/1721.1/137166
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
IEEE International Conference on Intelligent Robots and Systems
Publisher
IEEE
Citation
Marques, Joao V. Amorim, Ozdemir, Anil, Doyle, Matthew J., Rus, Daniela and Gros, Roderich. 2019. "Decentralized Pose Control of Modular Reconfigurable Robots Operating in Liquid Environments." IEEE International Conference on Intelligent Robots and Systems.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.