Show simple item record

dc.contributor.authorRosinol, Antoni
dc.contributor.authorAbate, Marcus
dc.contributor.authorChang, Yun
dc.contributor.authorCarlone, Luca
dc.date.accessioned2021-11-03T18:02:12Z
dc.date.available2021-11-03T18:02:12Z
dc.date.issued2020-09
dc.identifier.urihttps://hdl.handle.net/1721.1/137276
dc.description.abstract© 2020 IEEE. We provide an open-source C++ library for real-time metric-semantic visual-inertial Simultaneous Localization And Mapping (SLAM). The library goes beyond existing visual and visual-inertial SLAM libraries (e.g., ORB-SLAM, VINS-Mono, OKVIS, ROVIO) by enabling mesh reconstruction and semantic labeling in 3D. Kimera is designed with modularity in mind and has four key components: a visual-inertial odometry (VIO) module for fast and accurate state estimation, a robust pose graph optimizer for global trajectory estimation, a lightweight 3D mesher module for fast mesh reconstruction, and a dense 3D metric-semantic reconstruction module. The modules can be run in isolation or in combination, hence Kimera can easily fall back to a state-of-the-art VIO or a full SLAM system. Kimera runs in real-time on a CPU and produces a 3D metric-semantic mesh from semantically labeled images, which can be obtained by modern deep learning methods. We hope that the flexibility, computational efficiency, robustness, and accuracy afforded by Kimera will build a solid basis for future metric-semantic SLAM and perception research, and will allow researchers across multiple areas (e.g., VIO, SLAM, 3D reconstruction, segmentation) to benchmark and prototype their own efforts without having to start from scratch.en_US
dc.description.sponsorshipARL (Award W911NF-17-2-0181)en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA40945.2020.9196885en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleKimera: An Open-Source Library for Real-Time Metric-Semantic Localization and Mappingen_US
dc.typeArticleen_US
dc.identifier.citationRosinol, Antoni, Abate, Marcus, Chang, Yun and Carlone, Luca. 2020. "Kimera: An Open-Source Library for Real-Time Metric-Semantic Localization and Mapping." Proceedings - IEEE International Conference on Robotics and Automation.
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.relation.journalProceedings - IEEE International Conference on Robotics and Automationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-04-16T17:54:18Z
dspace.orderedauthorsRosinol, A; Abate, M; Chang, Y; Carlone, Len_US
dspace.date.submission2021-04-16T17:54:19Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record