MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

OpenTuner: an extensible framework for program autotuning

Author(s)
Ansel, Jason; Kamil, Shoaib; Veeramachaneni, Kalyan; Ragan-Kelley, Jonathan; Bosboom, Jeffrey; O'Reilly, Una-May; Amarasinghe, Saman; ... Show more Show less
Thumbnail
DownloadAccepted version (465.3Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Program autotuning has been shown to achieve better or more portable performance in a number of domains. However, autotuners themselves are rarely portable between projects, for a number of reasons: using a domain-informed search space representation is critical to achieving good results; search spaces can be intractably large and require advanced machine learning techniques; and the landscape of search spaces can vary greatly between different problems, sometimes requiring domain specific search techniques to explore efficiently. This paper introduces OpenTuner, a new open source framework for building domain-specific multi-objective program autotuners. OpenTuner supports fully-customizable configuration representations, an extensible technique representation to allow for domain-specific techniques, and an easy to use interface for communicating with the program to be autotuned. A key capability inside OpenTuner is the use of ensembles of disparate search techniques simultaneously; techniques that perform well will dynamically be allocated a larger proportion of tests. We demonstrate the efficacy and generality of OpenTuner by building autotuners for 7 distinct projects and 16 total benchmarks, showing speedups over prior techniques of these projects of up to 2.8x with little programmer effort. © 2014 ACM.
Date issued
2014-08-24
URI
https://hdl.handle.net/1721.1/137397
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
ACM
Citation
Ansel, Jason, Kamil, Shoaib, Veeramachaneni, Kalyan, Ragan-Kelley, Jonathan, Bosboom, Jeffrey et al. 2014. "OpenTuner: an extensible framework for program autotuning."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.