MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regret Bounds and Regimes of Optimality for User-User and Item-Item Collaborative Filtering

Author(s)
Bresler, Guy; Karzand, Mina
Thumbnail
DownloadAccepted version (530.1Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2018 IEEE. We consider an online model for recommendation systems, with each user being recommended an item at each time-step and providing 'like' or 'dislike' feedback. A latent variable model specifies the user preferences: both users and items are clustered into types. All users of a given type have identical preferences for the items, and similarly, items of a given type are either all liked or all disliked by a given user. The model captures structure in both the item and user spaces, and in this paper we assume that the type preference matrix is randomly generated. We describe two algorithms inspired by user-user and item-item collaborative filtering (CF), modified to explicitly make exploratory recommendations, and prove performance guarantees in terms of their expected regret. For two regimes of model parameters, with structure only in item space or only in user space, we prove information-theoretic lower bounds on regret that match our upper bounds up to logarithmic factors. Our analysis elucidates system operating regimes in which existing CF algorithms are nearly optimal.
Date issued
2018-02
URI
https://hdl.handle.net/1721.1/137451
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems; Massachusetts Institute of Technology. Institute for Data, Systems, and Society
Publisher
IEEE
Citation
Bresler, Guy and Karzand, Mina. 2018. "Regret Bounds and Regimes of Optimality for User-User and Item-Item Collaborative Filtering."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.