Show simple item record

dc.contributor.authorKim, Yoon
dc.contributor.authorWiseman, Sam
dc.contributor.authorMiller, Andrew C.
dc.contributor.authorSontag, David
dc.contributor.authorRush, Alexander M.
dc.date.accessioned2022-02-03T15:15:45Z
dc.date.available2021-11-05T14:22:51Z
dc.date.available2022-02-03T15:15:45Z
dc.date.issued2018
dc.identifier.issn1533-7928
dc.identifier.issn1532-4435
dc.identifier.urihttps://hdl.handle.net/1721.1/137476.2
dc.description.abstract© CURRAN-CONFERENCE. All rights reserved. Amortized variational inference (AVI) replaces instance-specific local inference with a global inference network. While AVI has enabled efficient training of deep generative models such as variational autoencoders (VAE), recent empirical work suggests that inference networks can produce suboptimal variational parameters. We propose a hybrid approach, to use AVI to initialize the variational parameters and run stochastic variational inference (SVI) to refine them. Crucially, the local SVI procedure is itself differentiable, so the inference network and generative model can be trained end-to-end with gradient-based optimization. This semi-amortized approach enables the use of rich generative models without experiencing the posterior-collapse phenomenon common in training VAEs for problems like text generation. Experiments show this approach outperforms strong autoregressive and variational baselines on standard text and image datasets.en_US
dc.language.isoen
dc.relation.isversionofhttp://proceedings.mlr.press/v80/kim18e.htmlen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProceedings of Machine Learning Researchen_US
dc.titleSemi-Amortized Variational Autoencodersen_US
dc.typeArticleen_US
dc.identifier.citationKim, Yoon, Wiseman, Sam, Miller, Andrew C., Sontag, David and Rush, Alexander M. 2018. "Semi-Amortized Variational Autoencoders." 35th International Conference on Machine Learning, ICML 2018, 6.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.relation.journal35th International Conference on Machine Learning, ICML 2018en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-04-09T14:27:01Z
dspace.orderedauthorsKim, Y; Wiseman, S; Miller, AC; Sontag, D; Rush, AMen_US
dspace.date.submission2021-04-09T14:27:02Z
mit.journal.volume6en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version