Show simple item record

dc.contributor.authorBraverman, Vladimir
dc.contributor.authorFeldman, Dan
dc.contributor.authorLang, Harry
dc.contributor.authorRus, Daniela L
dc.date.accessioned2022-09-06T19:06:28Z
dc.date.available2021-11-08T13:28:36Z
dc.date.available2022-09-06T19:06:28Z
dc.date.issued2019-09
dc.identifier.urihttps://hdl.handle.net/1721.1/137648.2
dc.description.abstract© Vladimir Braverman, Dan Feldman, Harry Lang, and Daniela Rus. We introduce a new method of maintaining a (k, ϵ)-coreset for clustering M-estimators over insertion-only streams. Let (P, w) be a weighted set (where w : P → [0, ∞) is the weight function) of points in a ρ-metric space (meaning a set X equipped with a positive-semidefinite symmetric function D such that D(x, z) ≤ ρ(D(x, y) + D(y, z)) for all x, y, z ∈ X). For any set of points C, we define COST(P, w, C) = ∑p∈P w(p) minc∈C D(p, c). A (k, ϵ)-coreset for (P, w) is a weighted set (Q, v) such that for every set C of k points, (1 − ϵ)COST(P, w, C) ≤ COST(Q, v, C) ≤ (1 + ϵ)COST(P, w, C). Essentially, the coreset (Q, v) can be used in place of (P, w) for all operations concerning the COST function. Coresets, as a method of data reduction, are used to solve fundamental problems in machine learning of streaming and distributed data. M-estimators are functions D(x, y) that can be written as ψ(d(x, y)) where (X, d) is a true metric (i.e. 1-metric) space. Special cases of M-estimators include the well-known k-median (ψ(x) = x) and k-means (ψ(x) = x2) functions. Our technique takes an existing offline construction for an M-estimator coreset and converts it into the streaming setting, where n data points arrive sequentially. To our knowledge, this is the first streaming construction for any M-estimator that does not rely on the merge-and-reduce tree. For example, our coreset for streaming metric k-means uses O(ϵ−2k log k log n) points of storage. The previous state-of-the-art required storing at least O(ϵ−2k log k log4 n) points.en_US
dc.language.isoen
dc.relation.isversionof10.4230/LIPIcs.APPROX-RANDOM.2019.62en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceDROPSen_US
dc.titleStreaming coreset constructions for M-estimatorsen_US
dc.typeArticleen_US
dc.identifier.citation2019. "Streaming coreset constructions for M-estimators." Leibniz International Proceedings in Informatics, LIPIcs, 145.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalLeibniz International Proceedings in Informatics, LIPIcsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-03-24T17:36:28Z
dspace.orderedauthorsBraverman, V; Feldman, D; Lang, H; Rus, Den_US
dspace.date.submission2021-03-24T17:36:29Z
mit.journal.volume145en_US
mit.licensePUBLISHER_CC
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version