Show simple item record

dc.contributor.authorMysore, Sheshera
dc.contributor.authorJensen, Zach
dc.contributor.authorKim, Edward
dc.contributor.authorHuang, Kevin Joon-Ming
dc.contributor.authorChang, Haw-Shiuan
dc.contributor.authorStrubell, Emma
dc.contributor.authorFlanigan, Jeffrey
dc.contributor.authorMcCallum, Andrew
dc.contributor.authorOlivetti, Elsa A.
dc.date.accessioned2021-12-20T19:55:44Z
dc.date.available2021-11-08T16:54:24Z
dc.date.available2021-12-20T19:55:44Z
dc.date.issued2019-07
dc.identifier.urihttps://hdl.handle.net/1721.1/137710.2
dc.description.abstract© 2019 Association for Computational Linguistics Materials science literature contains millions of materials synthesis procedures described in unstructured natural language text. Large-scale analysis of these synthesis procedures would facilitate deeper scientific understanding of materials synthesis and enable automated synthesis planning. Such analysis requires extracting structured representations of synthesis procedures from the raw text as a first step. To facilitate the training and evaluation of synthesis extraction models, we introduce a dataset of 230 synthesis procedures annotated by domain experts with labeled graphs that express the semantics of the synthesis sentences. The nodes in this graph are synthesis operations and their typed arguments, and labeled edges specify relations between the nodes. We describe this new resource in detail and highlight some specific challenges to annotating scientific text with shallow semantic structure. We make the corpus available to the community to promote further research and development of scientific information extraction systems.en_US
dc.description.sponsorshipNational Science Foundation (Awards 1534340/1534341)en_US
dc.description.sponsorshipOffice of Naval Research (Contract N00014-16-1-2432)en_US
dc.language.isoen
dc.relation.isversionofhttps://www.aclweb.org/anthology/W19-4007.pdfen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleThe materials science procedural text corpus: Annotating materials synthesis procedures with shallow semantic structuresen_US
dc.typeArticleen_US
dc.identifier.citation2019. "The materials science procedural text corpus: Annotating materials synthesis procedures with shallow semantic structures." LAW 2019 - 13th Linguistic Annotation Workshop, Proceedings of the Workshop.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Societyen_US
dc.relation.journalLAW 2019 - 13th Linguistic Annotation Workshop, Proceedings of the Workshopen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-09-10T16:55:47Z
dspace.orderedauthorsMysore, S; Jensen, Z; Kim, E; Huang, K; Chang, HS; Strubell, E; Flanigan, J; McCallum, A; Olivetti, Een_US
dspace.date.submission2020-09-10T16:55:49Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version