Show simple item record

dc.contributor.authorWang, Jian
dc.contributor.authorWells, William M.
dc.contributor.authorGolland, Polina
dc.contributor.authorZhang, Miaomiao
dc.date.accessioned2021-11-22T20:13:50Z
dc.date.available2021-11-09T19:48:22Z
dc.date.available2021-11-22T20:13:50Z
dc.date.issued2018
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/138063.2
dc.description.abstract© Springer Nature Switzerland AG 2018. This paper presents a novel approach to modeling the posterior distribution in image registration that is computationally efficient for large deformation diffeomorphic metric mapping (LDDMM). We develop a Laplace approximation of Bayesian registration models entirely in a bandlimited space that fully describes the properties of diffeomorphic transformations. In contrast to current methods, we compute the inverse Hessian at the mode of the posterior distribution of diffeomorphisms directly in the low dimensional frequency domain. This dramatically reduces the computational complexity of approximating posterior marginals in the high dimensional imaging space. Experimental results show that our method is significantly faster than the state-of-the-art diffeomorphic image registration uncertainty quantification algorithms, while producing comparable results. The efficiency of our method strengthens the feasibility in prospective clinical applications, e.g., real-time image-guided navigation for brain surgery.en_US
dc.description.sponsorshipNIH (Grants P41EB015898 and P41EB015902)en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionof10.1007/978-3-030-00928-1_99en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleEfficient Laplace Approximation for Bayesian Registration Uncertainty Quantificationen_US
dc.typeArticleen_US
dc.identifier.citationWang, Jian, Wells, William M., Golland, Polina and Zhang, Miaomiao. 2018. "Efficient Laplace Approximation for Bayesian Registration Uncertainty Quantification."en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-09-16T16:42:32Z
dspace.date.submission2019-09-16T16:42:37Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version