Show simple item record

dc.contributor.authorRouditchenko, Andrew
dc.contributor.authorZhao, Hang
dc.contributor.authorGan, Chuang
dc.contributor.authorMcDermott, Joshua Hartman
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2022-01-03T18:30:46Z
dc.date.available2021-11-09T21:16:55Z
dc.date.available2022-01-03T18:30:46Z
dc.date.issued2019-05
dc.identifier.urihttps://hdl.handle.net/1721.1/138075.2
dc.description.abstract© 2019 IEEE. Segmenting objects in images and separating sound sources in audio are challenging tasks, in part because traditional approaches require large amounts of labeled data. In this paper we develop a neural network model for visual object segmentation and sound source separation that learns from natural videos through self-supervision. The model is an extension of recently proposed work that maps image pixels to sounds [1]. Here, we introduce a learning approach to disentangle concepts in the neural networks, and assign semantic categories to network feature channels to enable independent image segmentation and sound source separation after audio-visual training on videos. Our evaluations show that the disentangled model outperforms several baselines in semantic segmentation and sound source separation.en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/icassp.2019.8682467en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSelf-Supervised Audio-Visual Co-Segmentationen_US
dc.typeArticleen_US
dc.identifier.citationRouditchenko, Andrew, Zhao, Hang, Gan, Chuang, McDermott, Josh and Torralba, Antonio. 2019. "Self-Supervised Audio-Visual Co-Segmentation."en_US
dc.contributor.departmentMIT-IBM Watson AI Laben_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-10-03T13:03:40Z
dspace.date.submission2019-10-03T13:03:45Z
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version