dc.contributor.author | Adler, Amir | |
dc.contributor.author | Araya-Polo, Mauricio | |
dc.contributor.author | Poggio, Tomaso | |
dc.date.accessioned | 2022-03-21T13:20:58Z | |
dc.date.available | 2021-12-09T19:30:50Z | |
dc.date.available | 2022-03-21T13:20:58Z | |
dc.date.issued | 2021-03 | |
dc.identifier.issn | 1053-5888 | |
dc.identifier.issn | 1558-0792 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/138408.2 | |
dc.description.abstract | © 1991-2012 IEEE. Seismic inversion is a fundamental tool in geophysical analysis, providing a window into Earth. In particular, it enables the reconstruction of large-scale subsurface Earth models for hydrocarbon exploration, mining, earthquake analysis, shallow hazard assessment, and other geophysical tasks. | en_US |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/msp.2020.3037429 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Prof. Poggio | en_US |
dc.title | Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Adler, A, Araya-Polo, M and Poggio, T. 2021. "Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows." IEEE Signal Processing Magazine, 38 (2). | en_US |
dc.contributor.department | McGovern Institute for Brain Research at MIT | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences | |
dc.relation.journal | IEEE Signal Processing Magazine | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2021-12-09T19:15:49Z | |
dspace.orderedauthors | Adler, A; Araya-Polo, M; Poggio, T | en_US |
dspace.date.submission | 2021-12-09T19:15:53Z | |
mit.journal.volume | 38 | en_US |
mit.journal.issue | 2 | en_US |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Authority Work Needed | en_US |