Show simple item record

dc.contributor.authorZhao, Yicheng
dc.contributor.authorZhang, Jiyun
dc.contributor.authorXu, Zhengwei
dc.contributor.authorSun, Shijing
dc.contributor.authorLangner, Stefan
dc.contributor.authorHartono, Noor Titan Putri
dc.contributor.authorHeumueller, Thomas
dc.contributor.authorHou, Yi
dc.contributor.authorElia, Jack
dc.contributor.authorLi, Ning
dc.contributor.authorMatt, Gebhard J
dc.contributor.authorDu, Xiaoyan
dc.contributor.authorMeng, Wei
dc.contributor.authorOsvet, Andres
dc.contributor.authorZhang, Kaicheng
dc.contributor.authorStubhan, Tobias
dc.contributor.authorFeng, Yexin
dc.contributor.authorHauch, Jens
dc.contributor.authorSargent, Edward H
dc.contributor.authorBuonassisi, Tonio
dc.contributor.authorBrabec, Christoph J
dc.date.accessioned2021-12-14T19:24:09Z
dc.date.available2021-12-14T19:24:09Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/138480
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Stability of perovskite-based photovoltaics remains a topic requiring further attention. Cation engineering influences perovskite stability, with the present-day understanding of the impact of cations based on accelerated ageing tests at higher-than-operating temperatures (e.g. 140°C). By coupling high-throughput experimentation with machine learning, we discover a weak correlation between high/low-temperature stability with a stability-reversal behavior. At high ageing temperatures, increasing organic cation (e.g. methylammonium) or decreasing inorganic cation (e.g. cesium) in multi-cation perovskites has detrimental impact on photo/thermal-stability; but below 100°C, the impact is reversed. The underlying mechanism is revealed by calculating the kinetic activation energy in perovskite decomposition. We further identify that incorporating at least 10 mol.% MA and up to 5 mol.% Cs/Rb to maximize the device stability at device-operating temperature (&lt;100°C). We close by demonstrating the methylammonium-containing perovskite solar cells showing negligible efficiency loss compared to its initial efficiency after 1800 hours of working under illumination at 30°C.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-021-22472-Xen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleDiscovery of temperature-induced stability reversal in perovskites using high-throughput robotic learningen_US
dc.typeArticleen_US
dc.identifier.citationZhao, Yicheng, Zhang, Jiyun, Xu, Zhengwei, Sun, Shijing, Langner, Stefan et al. 2021. "Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning." Nature Communications, 12 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Photovoltaic Research Laboratory
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-12-14T19:21:27Z
dspace.orderedauthorsZhao, Y; Zhang, J; Xu, Z; Sun, S; Langner, S; Hartono, NTP; Heumueller, T; Hou, Y; Elia, J; Li, N; Matt, GJ; Du, X; Meng, W; Osvet, A; Zhang, K; Stubhan, T; Feng, Y; Hauch, J; Sargent, EH; Buonassisi, T; Brabec, CJen_US
dspace.date.submission2021-12-14T19:21:29Z
mit.journal.volume12en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record