Show simple item record

dc.contributor.authorTiihonen, Armi
dc.contributor.authorCox-Vazquez, Sarah J.
dc.contributor.authorLiang, Qiaohao
dc.contributor.authorRagab, Mohamed
dc.contributor.authorRen, Zekun
dc.contributor.authorHartono, Noor Titan Putri
dc.contributor.authorLiu, Zhe
dc.contributor.authorSun, Shijing
dc.contributor.authorZhou, Cheng
dc.contributor.authorIncandela, Nathan C.
dc.contributor.authorLimwongyut, Jakkarin
dc.contributor.authorMoreland, Alex S.
dc.contributor.authorJayavelu, Senthilnath
dc.contributor.authorBazan, Guillermo C.
dc.contributor.authorBuonassisi, Tonio
dc.date.accessioned2022-05-31T16:26:32Z
dc.date.available2021-12-15T17:17:49Z
dc.date.available2022-05-31T16:26:32Z
dc.date.issued2021-11
dc.date.submitted2021-06
dc.identifier.issn0002-7863
dc.identifier.issn1520-5126
dc.identifier.urihttps://hdl.handle.net/1721.1/138491.2
dc.description.abstractNew antibiotics are needed to battle growing antibiotic resistance, but the development process from hit, to lead, and ultimately to a useful drug, takes decades. Although progress in molecular property prediction using machine-learning methods has opened up new pathways for aiding the antibiotics development process, many existing solutions rely on large datasets and finding structural similarities to existing antibiotics. Challenges remain in modelling of unconventional antibiotics classes that are drawing increasing research attention. In response, we developed an antimicrobial activity prediction model for conjugated oligoelectrolyte molecules, a new class of antibiotics that lacks extensive prior structure-activity relationship studies. Our approach enables us to predict minimum inhibitory concentration for E. coli K12, with 21 molecular descriptors selected by recursive elimination from a set of 5,305 descriptors. This predictive model achieves an R2 of 0.65 with no prior knowledge of the underlying mechanism. We find the molecular representation optimum for the domain is the key to good predictions of antimicrobial activity. In the case of conjugated oligoelectrolytes, a representation reflecting the 3-dimensional shape of the molecules is most critical. Although it is demonstrated with a specific example of conjugated oligoelectrolytes, our proposed approach for creating the predictive model can be readily adapted to other novel antibiotic candidate domains.en_US
dc.language.isoen
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/jacs.1c05055en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titlePredicting Antimicrobial Activity of Conjugated Oligoelectrolyte Molecules via Machine Learningen_US
dc.typeArticleen_US
dc.identifier.citationTiihonen, Armi, Cox-Vazquez, Sarah J, Liang, Qiaohao, Ragab, Mohamed, Ren, Zekun et al. 2021. "Predicting Antimicrobial Activity of Conjugated Oligoelectrolyte Molecules via Machine Learning." Journal of the American Chemical Society, 143 (45).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.contributor.departmentSingapore-MIT Alliance in Research and Technology (SMART)
dc.relation.journalJournal of the American Chemical Societyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-12-15T17:15:17Z
dspace.orderedauthorsTiihonen, A; Cox-Vazquez, SJ; Liang, Q; Ragab, M; Ren, Z; Hartono, NTP; Liu, Z; Sun, S; Zhou, C; Incandela, NC; Limwongyut, J; Moreland, AS; Jayavelu, S; Bazan, GC; Buonassisi, Ten_US
dspace.date.submission2021-12-15T17:15:19Z
mit.journal.volume143en_US
mit.journal.issue45en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version