Adversarial robustness of deep learning models : an error-correcting codes based approach
Author(s)
Gupta, Samarth (computation scientist)
Download1281682830-MIT.pdf (5.317Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Terms of use
Metadata
Show full item recordAbstract
Efficient operation and control of modern day urban systems such as transportation networks is now more important than ever due to huge societal benefits. Low cost network-wide sensors generate large amounts of data which needs to processed to extract useful information necessary for operational maintenance and to perform real-time control. Modern Machine Learning (ML) systems, particularly Deep Neural Networks (DNNs), provide a scalable solution to the problem of information retrieval from sensor data. Therefore, Deep Learning systems are increasingly playing an important role in day-to-day operations of our urban systems and hence cannot not be treated as standalone systems anymore. This naturally raises questions from a security viewpoint. Are modern ML systems robust to adversarial attacks for deployment in critical real-world applications? If not, then how can we make progress in securing these systems against such attacks? In this thesis we first demonstrate the vulnerability of modern ML systems on a real world scenario relevant to transportation networks by successfully attacking a commercial ML platform using a traffic-camera image. We review different methods of defense and various challenges associated in training an adversarially robust classifier. In terms of contributions, we propose and investigate a new method of defense to build adversarially robust classifiers using Error-Correcting Codes (ECCs). The idea of using Error-Correcting Codes for multi-class classification has been investigated in the past but only under nominal settings. We build upon this idea in the context of adversarial robustness of Deep Neural Networks. Following the guidelines of code-book design from literature, we formulate a discrete optimization problem to generate codebooks in a systematic manner. This optimization problem maximizes minimum hamming distance between codewords of the codebook while maintaining high column separation. Using the optimal solution of the discrete optimization problem as our codebook, we then build a (robust) multi-class classifier from that codebook. To estimate the adversarial accuracy of ECC based classifiers resulting from different codebooks, we provide methods to generate gradient based white-box attacks. We discuss estimation of class probability estimates (or scores) which are in itself useful for real-world applications along with their use in generating black-box and white-box attacks. We also discuss differentiable decoding methods, which can also be used to generate white-box attacks. We are able to outperform standard all-pairs codebook, providing evidence to the fact that compact codebooks generated using our discrete optimization approach can indeed provide high performance. Most importantly, we show that ECC based classifiers can be partially robust even without any adversarial training. We also show that this robustness is simply not a manifestation of the large network capacity of the overall classifier. Our approach can be seen as the first step towards designing classifiers which are robust by design. These contributions suggest that ECCs based approach can be useful to improve the robustness of modern ML systems and thus making urban systems more resilient to adversarial attacks.
Description
Thesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, February, 2020 Manuscript. Includes bibliographical references (pages 77-80).
Date issued
2020Department
Massachusetts Institute of Technology. Department of Civil and Environmental EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.