MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Human Mesh Recovery Using Radio Signals

Author(s)
Liu, Yingcheng
Thumbnail
DownloadThesis PDF (5.092Mb)
Advisor
Katabi, Dina
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
This thesis presents RF-Avatar, a neural network model that can estimate 3D meshes of the human body in the presence of occlusions, baggy clothes, and bad lighting conditions. We leverage that radio frequency (RF) signals in the WiFi range traverse clothes and occlusions and bounce off the human body. Our model parses such radio signals and recovers 3D body meshes. Our meshes are dynamic and smoothly track the movements of the corresponding people. Further, our model works both in single and multi-person scenarios. Inferring body meshes from radio signals is a highly under-constrained problem. Our model deals with this challenge using: 1) a combination of strong and weak supervision, 2) a multi-headed self-attention mechanism that attends differently to temporal information in the radio signal, and 3) an adversarially trained temporal discriminator that imposes a prior on the dynamics of human motion. Our results show that RF-Avatar accurately recovers dynamic 3D meshes in the presence of occlusions, baggy clothes, bad lighting conditions, and even through walls.
Date issued
2021-06
URI
https://hdl.handle.net/1721.1/139037
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.