MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learned scheduling for database management systems

Author(s)
Ukyab, Tenzin Samten
Thumbnail
DownloadThesis PDF (470.7Kb)
Advisor
Kraska, Tim
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Parallel database management systems need efficient job scheduling. Currently systems use simple heuristics ignoring the characteristics of database workloads. Therefore, we created an effective scheduler that uses machine learning techniques, such as reinforcement learning and neural networks, and does not require human intervention beyond an objective, such as reducing average job completion time. We use existing training techniques for job schedulers with dependency constraints. However, the model is specialized for database workloads using features specific to database queries, such as node operator type. In addition, we represent pipelining scheduling opportunities between operator tasks. With further training time our learned scheduler will be able to improve the average job completion time in comparison to heuristic schedulers, such as FIFO and fair scheduling.
Date issued
2021-06
URI
https://hdl.handle.net/1721.1/139086
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.