MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithms for Understanding and Fighting Infectious Disease

Author(s)
Hie, Brian Lance
Thumbnail
DownloadThesis PDF (93.68Mb)
Advisor
Berger, Bonnie A.
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Infectious disease is a persistent and substantial threat to human health, with consequences that include widespread mortality, suffering, and economic disruption. This thesis presents several algorithmic advances that, when coupled with biotechnologies for data collection and perturbation, are aimed at understanding infectious disease and using this knowledge to fight it. First, this thesis develops geometric algorithms that enable a panoramic understanding of the systems biology of the human immune system and of infectious pathogens at single-cell resolution. Next, this thesis will show how state-of-the-art Bayesian machine learning can explore complex biological spaces to search for new therapies that fight infectious disease. Finally, this thesis develops neural language models that can predict how pathogens mutate to evade human immunity, potentially enabling more broadly effective vaccines and therapies. Taken together, this thesis outlines a highly interdisciplinary, algorithmic approach to infectious disease research, with broader implications for computation and biology more generally.
Date issued
2021-06
URI
https://hdl.handle.net/1721.1/139231
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.