MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient Algorithms, Protocols and Hardware Architectures for Next-Generation Cryptography in Embedded Systems

Author(s)
Banerjee, Utsav
Thumbnail
DownloadThesis PDF (17.27Mb)
Advisor
Chandrakasan, Anantha P.
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
The Internet of Things (IoT) consists of an ever-growing network of wireless-connected electronic devices which are always collecting, processing and communicating data. While the IoT has inspired many new applications, these embedded devices have unique security challenges, thus making IoT security a major concern. Security architectures for IoT devices, both software and hardware, must be low-power and have low energy consumption, while still providing strong cryptographic guarantees and side-channel resilience. Network security protocols use a variety of cryptographic algorithms to achieve these goals. However, the associated computational complexity makes it extremely important to have low-power and energy-efficient embedded implementations of cryptography, especially public key algorithms. The research presented in this thesis demonstrates the design, implementation and experimental validation of efficient next-generation cryptography for embedded systems using software optimization, hardware acceleration and software-hardware co-design, along with side-channel countermeasures. Using circuit, architecture and algorithm techniques, efficient hardware-accelerated implementations of elliptic curve cryptography, pairing-based cryptography, lattice-based cryptography and other post-quantum cryptography algorithms are demonstrated with up to two orders of magnitude energy savings compared to state-of-the-art software and hardware. These configurable hardware accelerators are further coupled with a low-power micro-processor to provide the flexibility to implement a wide variety of security protocols, thus enabling strong and affordable security for energy-limited IoT nodes.
Date issued
2021-06
URI
https://hdl.handle.net/1721.1/139330
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.