MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Artificial Intelligence Based Approach to Automate Document Processing in Business Area

Author(s)
Chen, Ta Hang
Thumbnail
DownloadThesis PDF (3.439Mb)
Advisor
Gupta, Amar
Szolovits, Peter
Rhodes, Donna H.
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Automatic document processing is always a strategy for business executives to improve operational efficiency. With Optical Character Recognition (OCR) and machine learning techniques, businesses are able to apply Artificial Intelligence (AI) to automate the process. However, introducing an AI application to business is challenging; it is easy to fail because of the complexity between the technical and organizational components. This thesis considers document processing from a sociotechnical system perspective and leverages a four-step system analysis approach to identify the critical components. This research also proposes a machine learning model using Support Vector Machine (SVM) as the classifier and Word2vec embeddings as document features to classify business documents. The proposed model reaches a 0.872 Macro F1-score using scanned business documents from the RVL-CDIP dataset. The proposed model outperforms the other commonly used rule-based algorithms, RIPPER and PART, showing that the proposed model is potentially suitable to be deployed into business to classify the documents.
Date issued
2021-06
URI
https://hdl.handle.net/1721.1/139571
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; System Design and Management Program.
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.