Fracture of polymer networks with diverse topological defects
Author(s)
Lin, Shaoting; Zhao, Xuanhe
DownloadPublished version (649.1Kb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
© 2020 American Physical Society. Polymer networks are pervasive in biological organisms and engineering materials. Topological defects such as cyclic loops and dangling chains are ubiquitous in polymer networks. While fracture is a dominant mechanism for mechanical failures of polymer networks, existing models for fracture of polymer networks neglect the presence of topological defects. Here, we report a defect-network fracture model that accounts for the impact of various types of topological defects on fracture of polymer networks. We show that the fracture energy of polymer networks should account for the energy from multiple layers of polymer chains adjacent to the crack. We further show that the presence of topological defects tends to toughen a polymer network by increasing the effective chain length, yet to weaken the polymer network by introducing inactive polymer chains. Such competing effects can either increase or decrease the overall intrinsic fracture energy of the polymer network, depending on the types and densities of topological defects. Our model provides theoretical explanations for the experimental data on the intrinsic fracture energy of polymer networks with various types and densities of topological defects.
Date issued
2020-11Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental EngineeringJournal
Physical Review E
Publisher
American Physical Society (APS)
Citation
Lin, Shaoting and Zhao, Xuanhe. 2020. "Fracture of polymer networks with diverse topological defects." Physical Review E, 102 (5).
Version: Final published version
ISSN
2470-0053
2470-0045