Show simple item record

dc.contributor.advisorSoljačić, Marin
dc.contributor.authorLoh, Charlotte Chang Le
dc.date.accessioned2022-02-07T15:28:01Z
dc.date.available2022-02-07T15:28:01Z
dc.date.issued2021-09
dc.date.submitted2021-09-21T19:54:12.271Z
dc.identifier.urihttps://hdl.handle.net/1721.1/140165
dc.description.abstractData-driven approaches such as machine learning have been increasingly applied to the natural sciences, e.g. for property prediction and optimization or material discovery. An essential criteria to ensure the success of such methods is the need for extensive amounts of labeled data, making it unfeasible for data-scarce problems where labeled data generation is computationally expensive, or labour and time intensive. Here, I introduce surrogate and invariance- boosted contrastive learning (SIB-CL), a deep learning framework which overcomes data-scarcity by incorporating three “inexpensive" and easily obtainable auxiliary information. Specifically, these are: 1) abundant unlabeled data, 2) prior knowledge of known symmetries or invariances of the problem and 3) a surrogate dataset obtained at near-zero cost either from simplification or approximation. I demonstrate the effectiveness and generality of SIB-CL on various scientific problems, for example, the prediction of the density-of-states of 2D photonic crystals and solving the time-independent Schrödinger equation of 3D random potentials. SIB-CL is shown to provide orders of magnitude savings on the amount of labeled data needed when compared to conventional deep learning techniques, offering opportunities to apply data-driven methods even to data-scarce problems.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright MIT
dc.rights.urihttp://rightsstatements.org/page/InC-EDU/1.0/
dc.titleOvercoming Data Scarcity in Deep Learning of Scientific Problems
dc.typeThesis
dc.description.degreeS.M.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeMaster
thesis.degree.nameMaster of Science in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record