dc.contributor.author | Lusztig, G | |
dc.date.accessioned | 2022-02-09T19:19:53Z | |
dc.date.available | 2022-02-09T19:19:53Z | |
dc.date.issued | 2008-08-23 | |
dc.identifier.issn | 1531-586X | |
dc.identifier.issn | 1083-4362 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/140251 | |
dc.description.abstract | Let G be a special orthogonal group over an algebraically closed field of characteristic exponent p. In this paper we extend certain aspects of the Dynkin–Kostant theory of unipotent elements of G (when p = 1) to the general case (including p = 2). | en_US |
dc.language.iso | en | |
dc.publisher | Springer Nature America, Inc | en_US |
dc.relation.isversionof | 10.1007/s00031-008-9021-1 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | arXiv | en_US |
dc.title | Unipotent Elements in Small Characteristic, II | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Lusztig, G. Unipotent Elements in Small Characteristic, II. Transformation Groups 13, 773–797 (2008) | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.relation.journal | Transformation Groups | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2022-02-09T19:12:09Z | |
dspace.orderedauthors | Lusztig, G | en_US |
dspace.date.submission | 2022-02-09T19:12:09Z | |
mit.journal.volume | 13 | en_US |
mit.journal.issue | 3-4 | en_US |
mit.license | PUBLISHER_POLICY | |
mit.metadata.status | Authority Work Needed | en_US |