Show simple item record

dc.contributor.authorQi, Yifeng
dc.contributor.authorReyes, Alejandro
dc.contributor.authorJohnstone, Sarah E.
dc.contributor.authorAryee, Martin J.
dc.contributor.authorBernstein, Bradley E.
dc.contributor.authorZhang, Bin
dc.date.accessioned2022-06-06T14:39:42Z
dc.date.available2022-03-23T15:42:18Z
dc.date.available2022-06-06T14:39:42Z
dc.date.issued2020-11
dc.date.submitted2020-04
dc.identifier.issn0006-3495
dc.identifier.urihttps://hdl.handle.net/1721.1/141342.2
dc.description.abstract© 2020 Biophysical Society Chromosomes are positioned nonrandomly inside the nucleus to coordinate with their transcriptional activity. The molecular mechanisms that dictate the global genome organization and the nuclear localization of individual chromosomes are not fully understood. We introduce a polymer model to study the organization of the diploid human genome. It is data-driven because all parameters can be derived from Hi-C data; it is also a mechanistic model because the energy function is explicitly written out based on a few biologically motivated hypotheses. These two features distinguish the model from existing approaches and make it useful both for reconstructing genome structures and for exploring the principles of genome organization. We carried out extensive validations to show that simulated genome structures reproduce a wide variety of experimental measurements, including chromosome radial positions and spatial distances between homologous pairs. Detailed mechanistic investigations support the importance of both specific interchromosomal interactions and centromere clustering for chromosome positioning. We anticipate the polymer model, when combined with Hi-C experiments, to be a powerful tool for investigating large-scale rearrangements in genome structure upon cell differentiation and tumor progression.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.bpj.2020.09.009en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleData-Driven Polymer Model for Mechanistic Exploration of Diploid Genome Organizationen_US
dc.typeArticleen_US
dc.identifier.citationQi, Yifeng, Reyes, Alejandro, Johnstone, Sarah E, Aryee, Martin J, Bernstein, Bradley E et al. 2020. "Data-Driven Polymer Model for Mechanistic Exploration of Diploid Genome Organization." Biophysical Journal, 119 (9).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.relation.journalBiophysical Journalen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-03-23T15:36:53Z
dspace.orderedauthorsQi, Y; Reyes, A; Johnstone, SE; Aryee, MJ; Bernstein, BE; Zhang, Ben_US
dspace.date.submission2022-03-23T15:36:57Z
mit.journal.volume119en_US
mit.journal.issue9en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version