Moiré quantum chemistry: Charge transfer in transition metal dichalcogenide superlattices
Author(s)
Zhang, Yang; Yuan, Noah F. Q.; Fu, Liang
DownloadPublished version (879.1Kb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
© 2020 American Physical Society. Transition metal dichalcogenide (TMD) bilayers have recently emerged as a robust and tunable moiré system for studying and designing correlated electron physics. In this Rapid Communication, by combining a large-scale first-principles calculation and continuum model approach, we provide an electronic structure theory that maps long-period TMD heterobilayer superlattices onto diatomic crystals with cations and anions. We find that the interplay between the moiré potential and Coulomb interaction leads to filling-dependent charge transfer between different moiré superlattice regions. We show that the insulating state at half filling found in recent experiments on WSe2/WS2 is a charge-transfer insulator rather than a Mott-Hubbard insulator. Our work reveals the richness of simplicity in moiré quantum chemistry.
Date issued
2020-11Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Physical Review B
Publisher
American Physical Society (APS)
Citation
Zhang, Yang, Yuan, Noah FQ and Fu, Liang. 2020. "Moiré quantum chemistry: Charge transfer in transition metal dichalcogenide superlattices." Physical Review B, 102 (20).
Version: Final published version
ISSN
2469-9950
2469-9969