Show simple item record

dc.contributor.authorThomsen, Lars Lund
dc.contributor.authorDai, Lixin
dc.contributor.authorKara, Erin
dc.contributor.authorReynolds, Chris
dc.date.accessioned2022-05-27T15:49:17Z
dc.date.available2022-04-20T15:15:10Z
dc.date.available2022-05-27T15:49:17Z
dc.date.issued2022-02
dc.date.submitted2021-11
dc.identifier.issn0004-637X
dc.identifier.issn1538-4357
dc.identifier.urihttps://hdl.handle.net/1721.1/141963.2
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>X-ray reverberation is a powerful technique that uses the echoes of the coronal emission reflected by a black hole (BH) accretion disk to map out the inner disk structure. While the theory of X-ray reverberation has been developed almost exclusively for standard thin disks, reverberation lags have recently been observed from likely super-Eddington accretion sources such as the jetted tidal disruption event Swift J1644+57. In this paper, we extend X-ray reverberation studies into the regime of super-Eddington accretion with a focus on investigating the lags in the fluorescent Fe K<jats:italic>α</jats:italic> line region. We find that the coronal photons are mostly reflected by the fast and optically thick winds launched from the super-Eddington accretion flow, and this funnel-like reflection geometry produces lag–frequency and lag–energy spectra with unique observable characteristics. The lag–frequency spectrum exhibits a step-function-like decline near the first zero-crossing point. As a result, the magnitude of the lag scales linearly with the BH mass for a large parameter space, and the shape of the lag–energy spectrum remains almost independent of the choice of frequency bands. Not only can these features be used to distinguish super-Eddington accretion systems from sub-Eddington systems, but they are also key for constraining the reflection geometry and extracting parameters from the observed lags. When fitting the observed reverberation lag of Swift J1644+57 to our modeling, we find that the super-Eddington disk geometry is slightly preferred over the thin disk geometry, and we obtain a BH mass of 5–6 × 10<jats:sup>6</jats:sup> <jats:italic>M</jats:italic> <jats:sub>☉</jats:sub> and a coronal height around 10 <jats:italic>R<jats:sub>g</jats:sub> </jats:italic>.</jats:p>en_US
dc.language.isoen
dc.publisherAmerican Astronomical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.3847/1538-4357/ac3df3en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceThe American Astronomical Societyen_US
dc.titleRelativistic X-Ray Reverberation from Super-Eddington Accretion Flowen_US
dc.typeArticleen_US
dc.identifier.citationThomsen, Lars Lund, Dai, Lixin, Kara, Erin and Reynolds, Chris. 2022. "Relativistic X-Ray Reverberation from Super-Eddington Accretion Flow." The Astrophysical Journal, 925 (2).en_US
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Research
dc.relation.journalAstrophysical Journalen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-04-20T15:07:00Z
dspace.orderedauthorsThomsen, LL; Dai, L; Kara, E; Reynolds, Cen_US
dspace.date.submission2022-04-20T15:07:02Z
mit.journal.volume925en_US
mit.journal.issue2en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version