Show simple item record

dc.contributor.authorBluvstein, Dolev
dc.contributor.authorLevine, Harry
dc.contributor.authorSemeghini, Giulia
dc.contributor.authorWang, Tout T.
dc.contributor.authorEbadi, Sepehr
dc.contributor.authorKalinowski, Marcin
dc.contributor.authorKeesling, Alexander
dc.contributor.authorMaskara, Nishad
dc.contributor.authorPichler, Hannes
dc.contributor.authorGreiner, Markus
dc.contributor.authorVuletić, Vladan
dc.contributor.authorLukin, Mikhail D.
dc.date.accessioned2022-05-31T20:51:16Z
dc.date.available2022-05-04T16:15:27Z
dc.date.available2022-05-31T20:51:16Z
dc.date.issued2022-04
dc.date.submitted2021-12
dc.identifier.issn0028-0836
dc.identifier.issn1476-4687
dc.identifier.urihttps://hdl.handle.net/1721.1/142322.2
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems<jats:sup>1,2</jats:sup>. In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation<jats:sup>3–5</jats:sup>. We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state<jats:sup>6,7</jats:sup>. Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits<jats:sup>8</jats:sup> and a toric code state on a torus with sixteen data and eight ancillary qubits<jats:sup>9</jats:sup>. Finally, we use this architecture to realize a hybrid analogue–digital evolution<jats:sup>2</jats:sup> and use it for measuring entanglement entropy in quantum simulations<jats:sup>10–12</jats:sup>, experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars<jats:sup>13,14</jats:sup>. Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41586-022-04592-6en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.sourceNatureen_US
dc.titleA quantum processor based on coherent transport of entangled atom arraysen_US
dc.typeArticleen_US
dc.identifier.citationBluvstein, Dolev, Levine, Harry, Semeghini, Giulia, Wang, Tout T, Ebadi, Sepehr et al. 2022. "A quantum processor based on coherent transport of entangled atom arrays." Nature, 604 (7906).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.relation.journalNatureen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-05-04T16:07:46Z
dspace.orderedauthorsBluvstein, D; Levine, H; Semeghini, G; Wang, TT; Ebadi, S; Kalinowski, M; Keesling, A; Maskara, N; Pichler, H; Greiner, M; Vuletić, V; Lukin, MDen_US
dspace.date.submission2022-05-04T16:07:48Z
mit.journal.volume604en_US
mit.journal.issue7906en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version