MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chemistry-informed macromolecule graph representation for similarity computation, unsupervised and supervised learning

Author(s)
Mohapatra, Somesh; An, Joyce; Gómez-Bombarelli, Rafael
Thumbnail
DownloadPublished version (8.255Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title> <jats:p>The near-infinite chemical diversity of natural and artificial macromolecules arises from the vast range of possible component monomers, linkages, and polymers topologies. This enormous variety contributes to the ubiquity and indispensability of macromolecules but hinders the development of general machine learning methods with macromolecules as input. To address this, we developed a chemistry-informed graph representation of macromolecules that enables quantifying structural similarity, and interpretable supervised learning for macromolecules. Our work enables quantitative chemistry-informed decision-making and iterative design in the macromolecular chemical space.</jats:p>
Date issued
2022-03-01
URI
https://hdl.handle.net/1721.1/142530
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Machine Learning: Science and Technology
Publisher
IOP Publishing
Citation
Mohapatra, Somesh, An, Joyce and Gómez-Bombarelli, Rafael. 2022. "Chemistry-informed macromolecule graph representation for similarity computation, unsupervised and supervised learning." Machine Learning: Science and Technology, 3 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.