MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Text mining for processing conditions of solid-state battery electrolytes

Author(s)
Mahbub, Rubayyat; Huang, Kevin; Jensen, Zach; Hood, Zachary D; Rupp, Jennifer LM; Olivetti, Elsa A; ... Show more Show less
Thumbnail
DownloadPublished version (2.810Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licens http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2020 The Authors The search for safer next-generation lithium ion batteries has motivated development of solid-state electrolytes (SSEs), owing to their wide electrochemical potential window, high ionic conductivity (10−3 to 10−4 S cm−1) and good chemical stability with a wide range of high charge capacity electrode materials. Still, optimization of the processing conditions of SSEs without sacrificing the performance of the complete cell assembly remains challenging. Insights extracted from scientific literature can accelerate the optimization of processing protocols of SSEs, yet digesting the information scattered over thousands of journal articles is tedious and time consuming. In this work, we demonstrate the role of text mining to automatically compile materials synthesis parameters across tens of thousands of scholarly publications using machine learning and natural language processing techniques that glean information into the processing of sulfide and oxide-based Li SSEs. We also gain insight on low temperature synthesis of highly potential oxide-based Li garnet electrolytes, notably Li7La3Zr2O12 (LLZO), which can reduce the interface complexities during integration of the SSE into cell assembly. This work demonstrates the use of text and data mining to expedite the development of all-solid-state Li metal batteries by guiding hypotheses during experimental design.
Date issued
2020
URI
https://hdl.handle.net/1721.1/142582
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Electrochemistry Communications
Publisher
Elsevier BV
Citation
Mahbub, Rubayyat, Huang, Kevin, Jensen, Zach, Hood, Zachary D, Rupp, Jennifer LM et al. 2020. "Text mining for processing conditions of solid-state battery electrolytes." Electrochemistry Communications, 121.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.