MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning for High-Energy Collider Physics

Author(s)
Komiske III, Patrick Theodore
Thumbnail
DownloadThesis PDF (16.47Mb)
Advisor
Thaler, Jesse
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Fundamental physics, in particular high-energy collider physics, seeks to understand the natural world at the smallest scales, leading experimentally to the creation of large, complex datasets. Machine learning comprises a powerful set of statistical and computational tools enabling comprehensive exploitation of data. In this thesis, I develop machine learning methods to facilitate cutting-edge analysis techniques in particle physics. I model collider events as point clouds and develop neural network architectures that respect the inherent permutation symmetry and variable number of particles of an event, with infrared safety naturally incorporated. I further design a procedure that uses high-dimensional classifiers to achieve full-phase space, unbinned unfolding of all observables simultaneously. In the second part of this thesis, I define a distance metric between collider events based on optimal transport that allows for a rigorous construction of "event space" and its corresponding geometry. Using public datasets provided by the CMS collaboration, I explore this metric on a dataset of real jets, demonstrating its viability as an experimental method as well as the value of public collider data in benchmarking new techniques.
Date issued
2021-06
URI
https://hdl.handle.net/1721.1/142702
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.