Show simple item record

dc.contributor.authorArendt, Carli A.
dc.contributor.authorHeikoop, Jeffrey M.
dc.contributor.authorNewman, Brent D.
dc.contributor.authorWilson, Cathy J.
dc.contributor.authorWainwright, Haruko
dc.contributor.authorKumar, Jitendra
dc.contributor.authorAndersen, Christian G.
dc.contributor.authorWales, Nathan A.
dc.contributor.authorDafflon, Baptiste
dc.contributor.authorCherry, Jessica
dc.contributor.authorWullschleger, Stan D.
dc.date.accessioned2022-05-27T18:27:51Z
dc.date.available2022-05-27T15:42:43Z
dc.date.available2022-05-27T18:27:51Z
dc.date.issued2022-05
dc.date.submitted2022-05
dc.identifier.issn2504-3129
dc.identifier.urihttps://hdl.handle.net/1721.1/142798.2
dc.description.abstractClimate-driven permafrost thaw alters the strongly coupled carbon and nitrogen cycles within the Arctic tundra, influencing the availability of limiting nutrients including nitrate (NO<sub>3</sub><sup>&minus;</sup>). Researchers have identified two primary mechanisms that increase nitrogen and NO<sub>3</sub><sup>&minus;</sup> availability within permafrost soils: (1) the &lsquo;frozen feast&rsquo;, where previously frozen organic material becomes available as it thaws, and (2) &lsquo;shrubification&rsquo;, where expansion of nitrogen-fixing shrubs promotes increased soil nitrogen. Through the synthesis of original and previously published observational data, and the application of multiple geospatial approaches, this study investigates and highlights a third mechanism that increases NO<sub>3</sub><sup>&minus;</sup> availability: the hydrogeomorphic evolution of polygonal permafrost landscapes. Permafrost thaw drives changes in microtopography, increasing the drainage of topographic highs, thus increasing oxic conditions that promote NO<sub>3</sub><sup>&minus;</sup> production and accumulation. We extrapolate relationships between NO<sub>3</sub><sup>&minus;</sup> and soil moisture in elevated topographic features within our study area and the broader Alaskan Coastal Plain and investigate potential changes in NO<sub>3</sub><sup>&minus;</sup> availability in response to possible hydrogeomorphic evolution scenarios of permafrost landscapes. These approximations indicate that such changes could increase Arctic tundra NO<sub>3</sub><sup>&minus;</sup> availability by ~250&ndash;1000%. Thus, hydrogeomorphic changes that accompany continued permafrost degradation in polygonal permafrost landscapes will substantially increase soil pore water NO<sub>3</sub><sup>&minus;</sup> availability and boost future fertilization and productivity in the Arctic.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/nitrogen3020021en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleIncreased Arctic NO3− Availability as a Hydrogeomorphic Consequence of Permafrost Degradation and Landscape Dryingen_US
dc.typeArticleen_US
dc.identifier.citationNitrogen 3 (2): 314-332 (2022)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.relation.journalNitrogenen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-05-27T13:36:29Z
dspace.date.submission2022-05-27T13:36:29Z
mit.journal.volume3en_US
mit.journal.issue2en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version