MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fastened CROWN: Tightened Neural Network Robustness Certificates

Author(s)
Lyu, Zhaoyang; Ko, Ching-Yun; Kong, Zhifeng; Wong, Ngai; Lin, Dahua; Daniel, Luca; ... Show more Show less
Thumbnail
DownloadPublished version (937.1Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
<jats:p>The rapid growth of deep learning applications in real life is accompanied by severe safety concerns. To mitigate this uneasy phenomenon, much research has been done providing reliable evaluations of the fragility level in different deep neural networks. Apart from devising adversarial attacks, quantifiers that certify safeguarded regions have also been designed in the past five years. The summarizing work in (Salman et al. 2019) unifies a family of existing verifiers under a convex relaxation framework. We draw inspiration from such work and further demonstrate the optimality of deterministic CROWN (Zhang et al. 2018) solutions in a given linear programming problem under mild constraints. Given this theoretical result, the computationally expensive linear programming based method is shown to be unnecessary. We then propose an optimization-based approach FROWN (Fastened CROWN): a general algorithm to tighten robustness certificates for neural networks. Extensive experiments on various networks trained individually verify the effectiveness of FROWN in safeguarding larger robust regions.</jats:p>
Date issued
2020
URI
https://hdl.handle.net/1721.1/143106
Journal
Proceedings of the AAAI Conference on Artificial Intelligence
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Citation
Lyu, Zhaoyang, Ko, Ching-Yun, Kong, Zhifeng, Wong, Ngai, Lin, Dahua et al. 2020. "Fastened CROWN: Tightened Neural Network Robustness Certificates." Proceedings of the AAAI Conference on Artificial Intelligence, 34 (04).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.