MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anthropogenic and natural radioisotopes as tracers for contaminant sources and particulate fluxes

Author(s)
Kenyon, Jennifer An
Thumbnail
DownloadThesis PDF (23.06Mb)
Advisor
Buesseler, Ken O.
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Radioactive isotopes act as nuclear clocks that are utilized to trace and measure rates of chemical, biological, physical, and geological oceanographic processes. This thesis seeks to utilize both artificial (e.g., released from anthropogenic sources) and natural radioisotopes as tracers within the Pacific Ocean basin. Artificial radioisotopes released as a result of the 2011 Fukushima Daiichi nuclear power plants accident have the potential to negatively impact human and environmental health. This study evaluates 137Cs, 90Sr, and 129I concentrations in seawater off the coast of Japan, reconciles the sources of contaminated waters, and assesses the application of 137Cs/90Sr, 129I/137Cs, and 129I/90Sr as oceanic tracers. The analysis of activity ratios suggests a variety of sources, including ongoing sporadic and independent releases of radiocontaminants. Though decreasing, concentrations remain elevated compared to preaccident levels. Future planned releases of stored water from the reactor site may affect the surrounding environment; and thus, continued efforts to understand the distribution and fate of these radionuclides are warranted. Naturally-occurring radioisotopes (e.g., the 238U-234Th series used in this thesis) can give insight into surface export and remineralization of particulate organic carbon (POC) and trace metals (TMs). POC and TMs play a vital role in regulating the biological carbon pump (BCP), which in turn helps to moderate atmospheric CO2 levels by transporting carbon to the deep ocean, where it can be sequestered on timescales of centuries to millennia. Through this thesis we utilize the 238U:234Th disequilibrium method throughout the GEOTRACES GP15 Pacific Meridional Transect in order to provide basin-scale estimates of POC export and remineralization. There is only limited, recent use of this method to constrain TM fluxes, and as such this study also seeks to further develop this method for use in understanding TM cycling through comparative flux studies in the North Pacific.
Date issued
2022-02
URI
https://hdl.handle.net/1721.1/143183
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.