Show simple item record

dc.contributor.authorSung, Youngkyu
dc.contributor.authorDing, Leon
dc.contributor.authorBraumüller, Jochen
dc.contributor.authorVepsäläinen, Antti
dc.contributor.authorKannan, Bharath
dc.contributor.authorKjaergaard, Morten
dc.contributor.authorGreene, Ami
dc.contributor.authorSamach, Gabriel O
dc.contributor.authorMcNally, Chris
dc.contributor.authorKim, David
dc.contributor.authorMelville, Alexander
dc.contributor.authorNiedzielski, Bethany M
dc.contributor.authorSchwartz, Mollie E
dc.contributor.authorYoder, Jonilyn L
dc.contributor.authorOrlando, Terry P
dc.contributor.authorGustavsson, Simon
dc.contributor.authorOliver, William D
dc.date.accessioned2022-07-18T16:28:51Z
dc.date.available2022-07-18T16:28:51Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/143818
dc.description.abstractHigh-fidelity two-qubit gates at scale are a key requirement to realize the full promise of quantum computation and simulation. The advent and use of coupler elements to tunably control two-qubit interactions has improved operational fidelity in many-qubit systems by reducing parasitic coupling and frequency crowding issues. Nonetheless, two-qubit gate errors still limit the capability of near-term quantum applications. The reason, in part, is the existing framework for tunable couplers based on the dispersive approximation does not fully incorporate three-body multi-level dynamics, which is essential for addressing coherent leakage to the coupler and parasitic longitudinal ($ZZ$) interactions during two-qubit gates. Here, we present a systematic approach that goes beyond the dispersive approximation to exploit the engineered level structure of the coupler and optimize its control. Using this approach, we experimentally demonstrate CZ and $ZZ$-free iSWAP gates with two-qubit interaction fidelities of $99.76 \pm 0.07$% and $99.87 \pm 0.23$%, respectively, which are close to their $T_1$ limits.en_US
dc.language.isoen
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionof10.1103/PHYSREVX.11.021058en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAPSen_US
dc.titleRealization of High-Fidelity CZ and ZZ -Free iSWAP Gates with a Tunable Coupleren_US
dc.typeArticleen_US
dc.identifier.citationSung, Youngkyu, Ding, Leon, Braumüller, Jochen, Vepsäläinen, Antti, Kannan, Bharath et al. 2021. "Realization of High-Fidelity CZ and ZZ -Free iSWAP Gates with a Tunable Coupler." Physical Review X, 11 (2).
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.contributor.departmentLincoln Laboratory
dc.relation.journalPhysical Review Xen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-07-18T16:26:09Z
dspace.orderedauthorsSung, Y; Ding, L; Braumüller, J; Vepsäläinen, A; Kannan, B; Kjaergaard, M; Greene, A; Samach, GO; McNally, C; Kim, D; Melville, A; Niedzielski, BM; Schwartz, ME; Yoder, JL; Orlando, TP; Gustavsson, S; Oliver, WDen_US
dspace.date.submission2022-07-18T16:26:16Z
mit.journal.volume11en_US
mit.journal.issue2en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record