Show simple item record

dc.contributor.authorShah, Devavrat
dc.contributor.authorXie, Qiaomin
dc.contributor.authorXu, Zhi
dc.date.accessioned2022-07-20T13:48:12Z
dc.date.available2022-07-20T13:48:12Z
dc.date.issued2022-03-01
dc.identifier.urihttps://hdl.handle.net/1721.1/143877
dc.description.abstract<jats:p> In “Nonasymptotic Analysis of Monte Carlo Tree Search,” D. Shah, Q. Xie, and Z. Xu consider the popular tree-based search strategy, the Monte Carlo Tree Search (MCTS), in the context of the infinite-horizon discounted Markov decision process. They show that MCTS with an appropriate polynomial rather than logarithmic bonus term indeed leads to the desired convergence property. The authors derive the results by establishing a polynomial concentration property of regret for a class of nonstationary multiarm bandits. Furthermore, using this as a building block, they demonstrate that MCTS, combined with nearest neighbor supervised learning, acts as a “policy improvement” operator that can iteratively improve value function approximation. </jats:p>en_US
dc.language.isoen
dc.publisherInstitute for Operations Research and the Management Sciences (INFORMS)en_US
dc.relation.isversionof10.1287/opre.2021.2239en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleNonasymptotic Analysis of Monte Carlo Tree Searchen_US
dc.typeArticleen_US
dc.identifier.citationShah, Devavrat, Xie, Qiaomin and Xu, Zhi. 2022. "Nonasymptotic Analysis of Monte Carlo Tree Search." Operations Research.
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systems
dc.relation.journalOperations Researchen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-07-20T13:31:40Z
dspace.orderedauthorsShah, D; Xie, Q; Xu, Zen_US
dspace.date.submission2022-07-20T13:31:41Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record