MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stochastic dual dynamic programming for multistage stochastic mixed-integer nonlinear optimization

Author(s)
Zhang, Shixuan; Sun, Xu A.
Thumbnail
Download10107_2022_Article_1875.pdf (822.7Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with non-Lipschitzian value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a $$(T+1)$$ ( T + 1 ) -stage stochastic MINLP satisfying L-exact Lipschitz regularization with d-dimensional state spaces, to obtain an $$\varepsilon $$ ε -optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by $${\mathcal {O}}((\frac{2LT}{\varepsilon })^d)$$ O ( ( 2 L T ε ) d ) , and is lower bounded by $${\mathcal {O}}((\frac{LT}{4\varepsilon })^d)$$ O ( ( LT 4 ε ) d ) for the general case or by $${\mathcal {O}}((\frac{LT}{8\varepsilon })^{d/2-1})$$ O ( ( LT 8 ε ) d / 2 - 1 ) for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity depends polynomially on the number of stages. We further show that the iteration complexity depends linearly on T, if all the state spaces are finite sets, or if we seek a $$(T\varepsilon )$$ ( T ε ) -optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with T. To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization.
Date issued
2022-08-20
URI
https://hdl.handle.net/1721.1/144396
Department
Sloan School of Management; Massachusetts Institute of Technology. Operations Research Center
Publisher
Springer Berlin Heidelberg
Citation
Zhang, Shixuan and Sun, Xu A. 2022. "Stochastic dual dynamic programming for multistage stochastic mixed-integer nonlinear optimization."
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.