dc.contributor.author | Jakob, Konstantin | |
dc.contributor.author | Yun, Zhiwei | |
dc.date.accessioned | 2022-08-29T12:50:03Z | |
dc.date.available | 2022-08-29T12:50:03Z | |
dc.date.issued | 2022-08-24 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/144475 | |
dc.description.abstract | Abstract
We propose a new method to construct rigid G-automorphic representations and rigid
$${\widehat{G}}$$
G
^
-local systems for reductive groups G. The construction involves the notion of euphotic representations, and the proof for rigidity involves the geometry of certain Hessenberg varieties. | en_US |
dc.publisher | Springer International Publishing | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s00029-022-00789-9 | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Springer International Publishing | en_US |
dc.title | Euphotic representations and rigid automorphic data | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Selecta Mathematica. 2022 Aug 24;28(4):76 | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.identifier.mitlicense | PUBLISHER_CC | |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2022-08-28T03:11:49Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s) | |
dspace.embargo.terms | N | |
dspace.date.submission | 2022-08-28T03:11:49Z | |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |