MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Methods for Image-based Personalized Cancer Screening

Author(s)
Yala, Adam
Thumbnail
DownloadThesis PDF (16.55Mb)
Advisor
Barzilay, Regina
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
While AI has the potential to transform patient care, the development of equitable clinical AI models and their translation to hospitals remains difficult. From a computational perspective, these tools must deliver consistent performance across diverse populations and adapt to diverse clinical needs, while learning from biased and scarce data. Moreover, the development of tools relies on our capacity to balance clinical AI utility and patient privacy concerns. In this thesis, I will discuss our contributions in addressing the above challenges in three areas: 1) cancer risk assessment from imaging, 2) personalized screening policy design and 3) private data sharing through neural obfuscation. I have demonstrated that our clinical models offer significant improvements over the current standard of care across globally diverse patient populations. The models now underlie prospective clinical trails.
Date issued
2022-05
URI
https://hdl.handle.net/1721.1/144581
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.