MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-fidelity Two-qubit Gates and Noise Spectroscopy with Superconducting Qubits

Author(s)
Sung, Youngkyu
Thumbnail
DownloadThesis PDF (33.48Mb)
Advisor
Oliver, William D.
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Although there has been tremendous progress toward achieving low error rates with superconducting qubits, error-prone gates remain the bottleneck in realizing quantum computing applications. To build robust quantum computers, it is crucial to identify the dominant sources of errors and suppress them by engineering the control and architecture of qubit systems. In this thesis, we implement a tunable coupler and noise spectroscopy with the goal of achieving high-fidelity two-qubit gates and characterizing underlying noise mechanisms in superconducting qubits, respectively. We engineer various control techniques---including a fast adiabatic control and spin-locking noise spectroscopy---by incorporating the impact of higher energy levels of a qubit and coupler. Specifically, we harness the higher levels of a coupler as a resource to cancel out an unwanted ZZ interaction between qubits, and thereby improving the two-qubit gate fidelity. In addition, we exploit the multiple level transitions of a transmon sensor to distinguish the noise contributions from flux and photon shot noise. The control protocols developed in this thesis may help resolve hardware challenges in building quantum computers with low error rates.
Date issued
2022-05
URI
https://hdl.handle.net/1721.1/144591
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.