MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evidence-based AI Ethics

Author(s)
Boag, William
Thumbnail
DownloadThesis PDF (6.716Mb)
Advisor
Szolovits, Peter
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
With the rise in prominence of algorithmic-decision making, and numerous high-profile failures, many people have called for the integration of ethics into the development and use of these technologies. In the past five years, the field of “AI Ethics” has risen to prominence to explore questions such as 'how can ML algorithms be more fair' and 'are are tradeoffs when incorporating values such as fairness or privacy into models.' One common trend, particularly by corporations and governments, has been a top-down, principles-based approach for setting the agenda. However, such efforts are usually too abstract to engage with; everyone agrees models should be fair, but there is often disagreement on what "fair" means. In this work, I propose a bottom-up alternative: Evidence-based AI Ethics. Learning from other influential movements, such as Evidence-based Medicine, we can consider specific projects and examine them for "evidence." We draw from complementary critical lenses, one based on utilitarian ethics and on from intersectional feminism to analyze five case studies I have worked on, ranging from automatically-generated radiology reports to tech worker organizing.
Date issued
2022-05
URI
https://hdl.handle.net/1721.1/144715
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.