MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nano Vacuum Channel Devices for Electronics and Ultrafast Nanophotonics

Author(s)
Turchetti, Marco
Thumbnail
DownloadThesis PDF (22.39Mb)
Advisor
Berggren, Karl K.
Keathley, Phillip D.
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Recent years have seen a surge of interest in nano vacuum channel (NVC) devices due to their low power requirements, radiation hardness, integrability, and ultrafast switching times. Planar NVC devices are ideal candidates for electronics that need to operate in harsh environments such as space. Moreover, recent work, some of which is discussed in this thesis, has demonstrated a rectified, field driven current response from planar NVCs that extends to petahertz-scale frequencies. Such petahertz electronic devices enable field-resolved measurements of ultrafast phenomena and the capability to decode information stored directly on the optical field waveform. In this thesis, state of the art nanotechnology techniques are leveraged to develop a reliable nanofabrication process to pattern planar NVC devices using metallic and refractory materials. Their emission properties in response to both electrical and optical fields are investigated through simulation and testing. Finally, their use for electronics and optoelectronics applications is demonstrated and discussed. In particular, this thesis focuses on their use for building NVC devices for radiation-resistant logic, and for the development of novel optical-field processing techniques such as field sampling to perform time-domain spectroscopy with attosecond resolution. The results from this thesis have direct application in many fields, from metrology to communication to information processing, and represent an important contribution for the development of radiation resistant and petahertz electronics.
Date issued
2022-05
URI
https://hdl.handle.net/1721.1/144760
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.