MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic Spatio-Temporal Graph Convolutional Networks

Author(s)
Tell, Max R.
Thumbnail
DownloadThesis PDF (834.4Kb)
Advisor
Mazumder, Rahul
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Spatio-temporal modeling is an essential lens to understand many real-world phenomena from traffic [20] [10] to epidemiology [12]. Although forecasting time series is an exceptionally well-studied problem, recent years have seen impressive gains in the performance of graph learning as a paradigm for spatial learning problems. Some recent work has explored the intersection of these two fields but often assumes that the underlying graph structure is static. We introduce Dynamic Spatio-Temporal Graph Convolution Network (DST-GCN) as a novel architecture for spatio-temporal modeling with changing graph structure. DST-GCN employs a convolutional architecture to learn spatio-temporal relationships that provide strong generalization and attractive computational efficiency. We provide empirical results for several datasets from different domains that demonstrate the gains provided by DST-GCN.
Date issued
2022-05
URI
https://hdl.handle.net/1721.1/144864
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.