Show simple item record

dc.contributor.advisorOliva, Aude
dc.contributor.authorWang, Julia J.
dc.date.accessioned2022-08-29T16:18:04Z
dc.date.available2022-08-29T16:18:04Z
dc.date.issued2022-05
dc.date.submitted2022-05-27T16:19:35.541Z
dc.identifier.urihttps://hdl.handle.net/1721.1/144879
dc.description.abstractQuery intent classification is important for information retrieval and problem solving. We use natural language processing and collaborative filtering algorithms to build a recommendation engine for Stack Overflow tag predictions. Our pipeline consists of document retrieval (TF-IDF and HOTT), text embedding (Sentence BERT), and classification (multi-label and multi-class). We experiment with neural networks and other classifier strategies to identify the most relevant Stack Overflow tags. We then use these tags to implement collaborative filtering and recommend solutions based on similar existing posts in the database. The results displayed in this paper use Stack Overflow’s public dataset (https://www.kaggle. com/stackoverflow/stackoverflow).
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright MIT
dc.rights.urihttp://rightsstatements.org/page/InC-EDU/1.0/
dc.titleNatural Language Processing and Recommendation Engine for Stack Overflow Data
dc.typeThesis
dc.description.degreeM.Eng.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeMaster
thesis.degree.nameMaster of Engineering in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record