Show simple item record

dc.contributor.advisorAgrawal, Pulkit
dc.contributor.authorStallone, Matthew J.
dc.date.accessioned2022-08-29T16:19:53Z
dc.date.available2022-08-29T16:19:53Z
dc.date.issued2022-05
dc.date.submitted2022-05-27T16:18:39.021Z
dc.identifier.urihttps://hdl.handle.net/1721.1/144903
dc.description.abstractAs machine learning research becomes increasingly ubiquitous, novel algorithms and state-of-the-art models are progressing to an advanced state with considerably more complex and involved procedures. That is, to achieve groundbreaking results in such a climate, a researcher increasingly depends upon immense computational requisites to develop, train, and evaluate such algorithms. As a result, research labs are faced with the challenge of providing ample computational resources, and researchers are detracted from their core research in order to design, code, and configure experiments for the disparate computational resources provided. The framework proposed herein, therefore, strives to bridge the gaps between research labs, researchers, and computational resources by abstracting and automating the standard process of designing, training, and evaluating an algorithm. This framework, built upon the preexisting Monkey framework, will provide a fault-tolerant, decentralized system that is capable of scheduling and reproducing research training jobs. The framework maintains a virtual pseudo-homogenous cluster built on top of existing heterogeneous computational clusters. Moreover, the framework, designed to be flexible and cost-effective, also prioritizes user accessibility by providing access to an integrated machine learning toolkit with hyperparameter optimizers and a visualization dashboard.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright MIT
dc.rights.urihttp://rightsstatements.org/page/InC-EDU/1.0/
dc.titleMonkey: A Distributed Orchestrator for a Virtual Pseudo-Homogenous Computational Cluster Consisting of Heterogeneous Sources
dc.typeThesis
dc.description.degreeM.Eng.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeMaster
thesis.degree.nameMaster of Engineering in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record