MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genera via Deformation Theory and Supersymmetric Mechanics

Author(s)
Wilson, Araminta Amabel
Thumbnail
DownloadThesis PDF (919.3Kb)
Advisor
Hopkins, Michael J.
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
We study naturally occurring genera (i.e. cobordism invariants) from the deformation theory in- spired by supersymmetric quantum mechanics. First, we construct a canonical deformation quantization for symplectic supermanifolds. This gives a novel proof of the super-analogue of Fedosov quantization. Our proof uses the formalism of Gelfand-Kazhdan descent, whose foundations we establish in the super-symplectic setting. In the second part of this thesis, we prove a super-version of Nest-Tsygan’s algebraic index theorem, generalizing work of Engeli. This work is inspired by the appearance of the same genera in three related stories: index theory, trace methods in deformation theory, and partition functions in quantum field theory. Using the trace methodology, we compute the genus appearing in the story for supersymmetric quantum mechanics. This involves investigating supertraces on Weyl-Clifford algebras and deformations of symplectic supermanifolds.
Date issued
2022-05
URI
https://hdl.handle.net/1721.1/145087
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.