MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrability in random conformal geometry

Author(s)
Ang, Jie Jun
Thumbnail
DownloadThesis PDF (3.890Mb)
Advisor
Sheffield, Scott
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Liouville quantum gravity (LQG) is a random surface arising as the scaling limit of random planar maps. Schramm-Loewner evolution (SLE) is a random planar curve describing the scaling limits of interfaces in many statistical physics models. Liouville conformal field theory (LCFT) is the quantum field theory underlying LQG. Each of these satisfies conformal invariance or covariance. This thesis proves exact formulas in random conformal geometry; we highlight a few here. The Brownian annulus describes the scaling limit of uniform random planar maps with the annulus topology, and is the canonical annular 𝛾-LQG surface with 𝛾 = √︀8/3. We obtain the law of its modulus, which is as predicted from the ghost partition function in bosonic string theory. The conformal loop ensemble (CLE) is a random collection of loops in the plane which locally look like SLE, corresponding to the scaling limit of all interfaces in several important statistical mechanics models. We derive the three-point nesting statistic of simple CLE on the sphere. It agrees with the imaginary DOZZ formula of Zamolodchikov (2005) and Kostov-Petkova (2007), which is the three-point structure constant of the generalized minimal model conformal field theories. We compute the one-point bulk structure constant for LCFT on the disk, thereby proving the formula proposed by Fateev, Zamolodchikov and Zamolodchikov (2000). This is a disk analog of the DOZZ constant for the sphere. Our result represents the first step towards solving LCFT on surfaces with boundary via the conformal bootstrap. Our arguments depend on the interplay between LQG, SLE and LCFT. Firstly, LQG behaves well under conformal welding with SLE curves as the interfaces. Secondly, LCFT and LQG give complementary descriptions of the same geometry.
Date issued
2022-05
URI
https://hdl.handle.net/1721.1/145126
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.