MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning State and Action Abstractions for Effective and Efficient Planning

Author(s)
Chitnis, Rohan
Thumbnail
DownloadThesis PDF (14.43Mb)
Advisor
Kaelbling, Leslie P.
Lozano-Pérez, Tomás
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
An autonomous agent should make good decisions quickly. These two considerations --- effectiveness and efficiency --- are especially important, and often competing, when an agent plans to make decisions sequentially in long-horizon tasks. Unfortunately, planning directly in the state and action spaces of a task is intractable for many tasks of interest. Abstractions offer a mechanism for overcoming this intractability, allowing the agent to reason at a higher level about the most salient aspects of a task. In this thesis, we develop novel frameworks for learning state and action abstractions that are optimized for both effective and efficient planning. Most generally, state and action abstractions are arbitrary transformations of the state and action spaces of the given planning problem; we focus on task-specific abstractions that leverage the structure of a given task (or family of tasks) to make planning efficient. Throughout the chapters, we show how to learn neuro-symbolic abstractions for bilevel planning; present a method for learning to generate context-specific abstractions of Markov decision processes; formalize and give a tractable algorithm for reasoning efficiently about relevant exogenous processes in a Markov decision process; and introduce a powerful and general mechanism for planning in large problem instances containing many objects. We demonstrate across both classical and robotics planning tasks, using a wide variety of planners, that the methods we present optimize a tradeoff between planning effectively and planning efficiently.
Date issued
2022-05
URI
https://hdl.handle.net/1721.1/145150
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.