Show simple item record

dc.contributor.authorAndrejevic, Nina
dc.contributor.authorChen, Zhantao
dc.contributor.authorNguyen, Thanh
dc.contributor.authorFan, Leon
dc.contributor.authorHeiberger, Henry
dc.contributor.authorZhou, Ling-Jie
dc.contributor.authorZhao, Yi-Fan
dc.contributor.authorChang, Cui-Zu
dc.contributor.authorGrutter, Alexander
dc.contributor.authorLi, Mingda
dc.date.accessioned2022-09-19T12:28:33Z
dc.date.available2022-09-19T12:28:33Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/145472
dc.description.abstract<jats:p> Polarized neutron reflectometry is a powerful technique to interrogate the structures of multilayered magnetic materials with depth sensitivity and nanometer resolution. However, reflectometry profiles often inhabit a complicated objective function landscape using traditional fitting methods, posing a significant challenge for parameter retrieval. In this work, we develop a data-driven framework to recover the sample parameters from polarized neutron reflectometry data with minimal user intervention. We train a variational autoencoder to map reflectometry profiles with moderate experimental noise to an interpretable, low-dimensional space from which sample parameters can be extracted with high resolution. We apply our method to recover the scattering length density profiles of the topological insulator–ferromagnetic insulator heterostructure Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>/EuS exhibiting proximity magnetism in good agreement with the results of conventional fitting. We further analyze a more challenging reflectometry profile of the topological insulator–antiferromagnet heterostructure (Bi,Sb)<jats:sub>2</jats:sub>Te<jats:sub>3</jats:sub>/Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and identify possible interfacial proximity magnetism in this material. We anticipate that the framework developed here can be applied to resolve hidden interfacial phenomena in a broad range of layered systems. </jats:p>en_US
dc.language.isoen
dc.publisherAIP Publishingen_US
dc.relation.isversionof10.1063/5.0078814en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAmerican Institute of Physics (AIP)en_US
dc.titleElucidating proximity magnetism through polarized neutron reflectometry and machine learningen_US
dc.typeArticleen_US
dc.identifier.citationAndrejevic, Nina, Chen, Zhantao, Nguyen, Thanh, Fan, Leon, Heiberger, Henry et al. 2022. "Elucidating proximity magnetism through polarized neutron reflectometry and machine learning." Applied Physics Reviews, 9 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalApplied Physics Reviewsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-09-19T12:23:30Z
dspace.orderedauthorsAndrejevic, N; Chen, Z; Nguyen, T; Fan, L; Heiberger, H; Zhou, L-J; Zhao, Y-F; Chang, C-Z; Grutter, A; Li, Men_US
dspace.date.submission2022-09-19T12:23:33Z
mit.journal.volume9en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record