dc.contributor.author | Andrejevic, Nina | |
dc.contributor.author | Chen, Zhantao | |
dc.contributor.author | Nguyen, Thanh | |
dc.contributor.author | Fan, Leon | |
dc.contributor.author | Heiberger, Henry | |
dc.contributor.author | Zhou, Ling-Jie | |
dc.contributor.author | Zhao, Yi-Fan | |
dc.contributor.author | Chang, Cui-Zu | |
dc.contributor.author | Grutter, Alexander | |
dc.contributor.author | Li, Mingda | |
dc.date.accessioned | 2022-09-19T12:28:33Z | |
dc.date.available | 2022-09-19T12:28:33Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/145472 | |
dc.description.abstract | <jats:p> Polarized neutron reflectometry is a powerful technique to interrogate the structures of multilayered magnetic materials with depth sensitivity and nanometer resolution. However, reflectometry profiles often inhabit a complicated objective function landscape using traditional fitting methods, posing a significant challenge for parameter retrieval. In this work, we develop a data-driven framework to recover the sample parameters from polarized neutron reflectometry data with minimal user intervention. We train a variational autoencoder to map reflectometry profiles with moderate experimental noise to an interpretable, low-dimensional space from which sample parameters can be extracted with high resolution. We apply our method to recover the scattering length density profiles of the topological insulator–ferromagnetic insulator heterostructure Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>/EuS exhibiting proximity magnetism in good agreement with the results of conventional fitting. We further analyze a more challenging reflectometry profile of the topological insulator–antiferromagnet heterostructure (Bi,Sb)<jats:sub>2</jats:sub>Te<jats:sub>3</jats:sub>/Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and identify possible interfacial proximity magnetism in this material. We anticipate that the framework developed here can be applied to resolve hidden interfacial phenomena in a broad range of layered systems. </jats:p> | en_US |
dc.language.iso | en | |
dc.publisher | AIP Publishing | en_US |
dc.relation.isversionof | 10.1063/5.0078814 | en_US |
dc.rights | Creative Commons Attribution 4.0 International license | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | American Institute of Physics (AIP) | en_US |
dc.title | Elucidating proximity magnetism through polarized neutron reflectometry and machine learning | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Andrejevic, Nina, Chen, Zhantao, Nguyen, Thanh, Fan, Leon, Heiberger, Henry et al. 2022. "Elucidating proximity magnetism through polarized neutron reflectometry and machine learning." Applied Physics Reviews, 9 (1). | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Nuclear Science and Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.relation.journal | Applied Physics Reviews | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2022-09-19T12:23:30Z | |
dspace.orderedauthors | Andrejevic, N; Chen, Z; Nguyen, T; Fan, L; Heiberger, H; Zhou, L-J; Zhao, Y-F; Chang, C-Z; Grutter, A; Li, M | en_US |
dspace.date.submission | 2022-09-19T12:23:33Z | |
mit.journal.volume | 9 | en_US |
mit.journal.issue | 1 | en_US |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |