Show simple item record

dc.contributor.authorBajaj, Akash
dc.contributor.authorDuan, Chenru
dc.contributor.authorNandy, Aditya
dc.contributor.authorTaylor, Michael G
dc.contributor.authorKulik, Heather J
dc.date.accessioned2022-09-19T16:42:22Z
dc.date.available2022-09-19T16:42:22Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/145491
dc.description.abstract<jats:p> Low-cost, non-empirical corrections to semi-local density functional theory are essential for accurately modeling transition-metal chemistry. Here, we demonstrate the judiciously modified density functional theory (jmDFT) approach with non-empirical U and J parameters obtained directly from frontier orbital energetics on a series of transition-metal complexes. We curate a set of nine representative Ti(III) and V(IV) d<jats:sup>1</jats:sup> transition-metal complexes and evaluate their flat-plane errors along the fractional spin and charge lines. We demonstrate that while jmDFT improves upon both DFT+U and semi-local DFT with the standard atomic orbital projectors (AOPs), it does so inefficiently. We rationalize these inefficiencies by quantifying hybridization in the relevant frontier orbitals. To overcome these limitations, we introduce a procedure for computing a molecular orbital projector (MOP) basis for use with jmDFT. We demonstrate this single set of d<jats:sup>1</jats:sup> MOPs to be suitable for nearly eliminating all energetic delocalization and static correlation errors. In all cases, MOP jmDFT outperforms AOP jmDFT, and it eliminates most flat-plane errors at non-empirical values. Unlike DFT+U or hybrid functionals, jmDFT nearly eliminates energetic delocalization and static correlation errors within a non-empirical framework. </jats:p>en_US
dc.language.isoen
dc.publisherAIP Publishingen_US
dc.relation.isversionof10.1063/5.0089460en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAmerican Institute of Physics (AIP)en_US
dc.titleMolecular orbital projectors in non-empirical jmDFT recover exact conditions in transition-metal chemistryen_US
dc.typeArticleen_US
dc.identifier.citationBajaj, Akash, Duan, Chenru, Nandy, Aditya, Taylor, Michael G and Kulik, Heather J. 2022. "Molecular orbital projectors in non-empirical jmDFT recover exact conditions in transition-metal chemistry." The Journal of Chemical Physics, 156 (18).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.relation.journalThe Journal of Chemical Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-09-19T14:34:52Z
dspace.orderedauthorsBajaj, A; Duan, C; Nandy, A; Taylor, MG; Kulik, HJen_US
dspace.date.submission2022-09-19T14:34:58Z
mit.journal.volume156en_US
mit.journal.issue18en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record