Show simple item record

dc.contributor.authorLee, Sang Uk
dc.contributor.authorHong, Sungkweon
dc.contributor.authorHofmann, Andreas
dc.contributor.authorWilliams, Brian
dc.date.accessioned2022-09-21T15:50:30Z
dc.date.available2022-09-21T15:50:30Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/145545
dc.description.abstract© 2020 IEEE. Humans perceive and describe their surroundings with qualitative statements (e.g., "Alice's hand is in contact with a bottle."), rather than quantitative values (e.g., 6-D poses of Alice's hand and a bottle). Qualitative spatial representation (QSR) is a framework that represents the spatial information of objects in a qualitative manner. Region connection calculus (RCC), qualitative trajectory calculus (QTC), and qualitative distance calculus (QDC) are some popular QSR calculi. With the recent development of computer vision, it is important to compute QSR calculi from the visual inputs (e.g., RGB-D images). In fact, many QSR application domains (e.g., human activity recognition (HAR) in robotics) involve visual inputs. We propose a qualitative spatial representation network (QSRNet) that computes the three QSR calculi (i.e., RCC, QTC, and QDC) from the RGB-D images. QSRNet has the following novel contributions. First, QSRNet models the dependencies among the three QSR calculi. We introduce the dependencies as kinematics for QSR because they are analogous to the kinematics in classical mechanics. Second, QSRNet applies the 3-D point cloud instance segmentation to compute the QSR calculi. The experimental results show that QSRNet improves the accuracy in comparison to the other state-of-the-art techniques.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/IROS45743.2020.9341452en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleQSRNet: Estimating Qualitative Spatial Representations from RGB-D Imagesen_US
dc.typeArticleen_US
dc.identifier.citationLee, Sang Uk, Hong, Sungkweon, Hofmann, Andreas and Williams, Brian. 2020. "QSRNet: Estimating Qualitative Spatial Representations from RGB-D Images." IEEE International Conference on Intelligent Robots and Systems.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.relation.journalIEEE International Conference on Intelligent Robots and Systemsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-09-21T15:44:41Z
dspace.orderedauthorsLee, SU; Hong, S; Hofmann, A; Williams, Ben_US
dspace.date.submission2022-09-21T15:44:43Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record