MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Environmental modulation of microbial communities

Author(s)
Abreu, Clare I. (Clare Isabel)
Thumbnail
Download1241696632-MIT.pdf (9.609Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Microbial communities are crucial to the health of all ecosystems, and their vast diversity constitutes the majority of species on Earth. A single sample of such a community immediately reveals its complexity, but simultaneously the challenges to understanding its form and function. First, a sample provides a snapshot of a community's current state, but fails to explain how hundreds to thousands of species might emerge and remain together. Second, microbial communities are in constant flux, with species abundances changing in response to biotic interactions with each other as well as abiotic environmental conditions, making it difficult to surmise which forces drive community dynamics. In this thesis, I describe the "bottom-up" approach my colleagues and I use to build microbial communities in the laboratory. By using tractable experimental microcosms and tuning particular abiotic parameters while holding others constant, we discover the effects of environmental changes on community structure. Furthermore, we find that we can verify simple theoretical predictions about how the environment changes interactions and, by extension, community composition. We employ and modify a simple phenomenological model, the Lotka-Volterra interspecific competition model, to make predictions about the effects of increasing mortality, increasing temperature, and environmental fluctuations. We verify these predictions with a diverse set of bacterial species engaged in pairwise competition, and use these pairwise results to successfully predict the outcomes of communities of three or more species. Despite the fact that we knew little about the species other than simple attributes such as their growth rates, the model was generally successful, indicating universal behaviors in response to environmental changes. Our results can provide intuition for experimentalists in tuning laboratory conditions, as well as to scientists studying the effect of the environment on field communities
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, May, 2020
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 155-166).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/145793
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.