MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lower bounds on same-set inner product in correlated spaces

Author(s)
Hazła, J; Holenstein, T; Mossel, E
Thumbnail
DownloadPublished version (505.7Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Let Ρ be a probability distribution over a finite alphabet Ωℓ with all ℓ marginals equal. Let X(1), . . . , X(ℓ), X(j) = (X(j)1 , . . . , X(j)n ) be random vectors such that for every coordinate i ϵ [n] the tuples (X(i)1 , . . . , X(ℓ)i ) are i.i.d. according to Ρ. The question we address is: does there exist a function cΡ() independent of n such that for every f :Ωn → [0, 1] with E[f(X(1))] = μ > 0: E Φ Yj=1 f(X(j)) # ≥ cΡ(μ) > 0 ? We settle the question for ℓ = 2 and when ℓ > 2 and P has bounded correlation ρ(P) < 1.
Date issued
2016-09-01
URI
https://hdl.handle.net/1721.1/145808
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Leibniz International Proceedings in Informatics, LIPIcs
Citation
Lower Bounds on Same-Set Inner Product in Correlated Spaces. 19th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2016 and the 20th International Workshop on Randomization and Computation, RANDOM 2016, September 7, 2016 - September 9, 2016. 2016. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.